Thursday, July 7, 2016

World's first eHighway opens in Sweden

On June 22, 2016 the world's first eHighway opened in Sweden.... For the next two years, a Siemens catenary system for trucks will be tested on a two-kilometer stretch of the E16 highway north of Stockholm. The trial will use two diesel hybrid vehicles manufactured by Scania and adapted, in collaboration with Siemens, to operate under the catenary system. "The Siemens eHighway is twice as efficient as conventional internal combustion engines. The Siemens innovation supplies trucks with power from an overhead contact line. This means that not only is energy consumption cut by half, but local air pollution is reduced too," says Roland Edel, Chief Engineer at the Siemens Mobility Division.
Transport accounts for more than one third of Sweden's CO2 emissions, with almost half of that coming from freight transport. As part of its climate protection strategy, Sweden has committed to having a fossil fuel independent transport sector by 2030....

The core of the system is an intelligent pantograph combined with a hybrid drive system. A sensor system enables the pantograph to connect to and disconnect from the overhead line at speeds of up to 90 km per hour. Trucks equipped with the system draw power from the overhead catenary wires as they drive, enabling them to travel efficiently and with zero local emissions. Thanks to the hybrid system, operation outside of the contact line is also possible, thus maintaining the flexibility of conventional trucks. The eHighway technology features an open configuration. As a result, battery or natural gas solutions, for example, can be implemented as an alternative to the diesel hybrid drive system used in Sweden. This allows the system to be adapted flexibly .

Siemens is currently developing another eHighway demonstration project in California. This project is being undertaken in collaboration with vehicle manufacturer Volvo on behalf of the South Coast Air Quality Management District (SCAQMD). Tests will be conducted throughout 2017 to see how different truck configurations interact with the eHighway infrastructure in the vicinity of the ports of Los Angeles and Long Beach.

More information, press photos and footage material are available at
ith today’s technology, driving a semi-truck 500 miles (804 kilometers) would require a 23-ton lithium-ion battery, half the weight of the truck itself. Fuel cells would need a massive, $2 million hydrogen fuel tank to go the distance. Embedding wireless charging coils in roadbed would be expensive and inefficient.
But an invention first deployed in 1870 to power trains and streetcars might be the perfect fit: catenary, overhead electrical wires commonly found around the world. The German engineering company Siemens, presenting at an electric vehicle conference in Montreal this month, argues it can power unlimited-distance electric trucks with intermittent overhead wires that provide enough energy for fast-moving, long-haul highway journeys.
With on-board batteries added to the trucks, the company estimates all of Germany’s roads could be can be outfitted for long-distance electric hauling with just 4,000 km of wire. Trucks would be able to recharge on highways and operate on battery power while on rural and urban streets. The system would cost a fraction the price of alternatives like hydrogen fuel cells, and deliver as much as €200 billion ($227 billion) in net savings over 30 years compared with other approaches, reports IDTechEx, which attended the presentation.
The technology is ready to go. New advances in catenary systems allow hybrid vehicles to switch seamlessly between overhead charging and battery power at high-speeds. For now, the trucks are diesel hybrids, but extensive overhead wires and efficient batteries would permit the vehicles to eliminate internal combustions engines entirely.

June 22, 2016 
by Michael Coren

No comments:

Post a Comment